Clean catalytic combustion of nitrogen-bearing gasified biomass

Robert Burch and Barry W. L. Southward*

Catalysis Research Group, Department of Chemistry, The Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland. E-mail: b.w.l.southward@qub.ac.uk

Received (in Cambridge, UK) 24th January 2000, Accepted 15th March 2000

Zero NO*^x* **emissions are obtained in the catalytic combustion of simulated biomass mixtures containing substantial amounts of ammonia by optimisation of NH3 oxidation and** NO_x **reduction using a 2%Rh–Al₂O₃ catalyst.**

Renewable energy sources will be of increasing importance for power generation in the future. Attempts have been made to harness biomass-derived fuels for combined heat and power generation.1–3 However, gasified biomass contains significant quantities of NH₃ (600–4000 ppm) in addition to substantial amounts of CO (9.8–17.2%), H_2 (9.8–13.2%) as well as CH₄, $CO₂$, H₂O and N₂.³ The NH₃ represents a particular challenge since its combustion in the gas phase results in the formation of an equivalent amount of NO*x*.

The environmental benefits of cleaner power generation has prompted much interest in catalytically stabilised combustion to reduce harmful emissions of nitrogen oxides (NO*x*) and unburnt fuels.1,2,4 A key question is whether catalytic combustion of biomass-derived gases can be controlled so as to avoid the conversion of ammonia into NO_x . The novel solution to this problem which we have discovered,⁵ and which is reported here, is to first oxidise all the ammonia to NO_x and then utilise the large excess of CO and H_2 in the gas stream to reduce the NO_x to $N₂$ through the NO/CO and NO/H₂ reactions.

The catalyst used was $2\%Rh - Al_2O_3$ prepared by incipient wetness impregnation of $CK300$ Al_2O_3 (ex Akzo, surface area 200 m² g⁻¹). The dried Al₂O₃ (120 °C, 24 h) was impregnated with Rh III nitrate (ex Johnson Matthey) and dried at room temperature for 24 h, then at 120 °C for a further 24 h prior to calcination at 700 °C in flowing O_2 /He for 12 h. A second catalyst comprising $2\%Rh-10\%CeO₂-Al₂O₃$ was prepared by sequential impregnation/calcination of Ce(NO₃)₃·6H₂O followed by Rh(NO₃)₃. Catalyst testing (60 mg, prereduced for 4 h at 700 $^{\circ}$ C in CO/H₂/He) was performed in a standard quartz flow microreactor at a GHSV of 240000 h⁻¹. Product analysis was by mass spectrometry (Hiden DSMS) with NO*^x* emissions and residual NH₃ levels being corroborated using an external $NH₃$ oxidation reactor (with independent oxygen supply) coupled with a NO_x chemiluminescence detector (Signal series 4000).

A conventional direct oxidation of NH_3 over 2%Rh–Al₂O₃ at typical gasifier output temperatures (Fig. 1) shows a low conversion initially but with a high selectivity to N_2 . However, whilst both conversion and N_2 yields increase with temperature, N_2O and NO are also formed. N_2O and N_2 concentrations peak at *ca.* 375 °C (*ca.* 85–90% N_2) before decreasing, consistent with previous results,^{2,6} whilst NO formation is seen to increase steadily with temperature to become the major product at *T* > 500 °C. Fig. 1 therefore illustrates the difficulty of selectively oxidising $NH₃$ by conventional methods.

However, such problems may be overcome by making use of the other components of the biomass gas, namely CO and H_2 and by controlling the process conditions. Thus, catalytic reduction of NO by CO is very facile,7 and the reduction of NO*^x* by H_2 has also been demonstrated.⁸ Therefore, if NH_3 is first oxidised to NO*x*, the other components of the biomass gas (CO and H₂) could be used for the catalytic reduction of NO_x to $N₂$. Hence by coupling NH_3 oxidation with NO_x reduction in an oxygen-limited environment it should be possible to convert $NH₃$ completely to $N₂$ in a pseudo-two-stage process. Thus, the strategy we propose is to first catalyse the complete oxidation of the NH₃ to $\overline{NO_x}$ in a limited amount of O_2 , followed by catalytic reduction of NO_x by the CO or $H₂$ present in the biomass gas.

The main challenge is to selectively oxidise $NH₃$ in the presence of a large excess of CO and $H₂$. Our success in achieving this with a Rh catalyst is illustrated in Fig. 2. This shows that conversion of NH₃, rather than reaction selectivity, is the limiting factor for the selective oxidation. Thus, at low temperatures $NH₃$ does not react but $H₂$ and CO are very reactive. In contrast, at higher temperatures, the NH₃ begins to react and by around 600° °C the conversion of ammonia is effectively 100% whereas the combustion of H_2 has dropped to close to zero. Of course, the overall levels of oxidation are limited, deliberately, by controlling the O_2 concentration. Clearly, with this catalyst the selective oxidation of $NH₃$ to NO_x in the presence of a large excess of CO and H_2 has been achieved. The second stage, namely, the reduction of the NO*^x*

Fig. 1 Nitrogen-bearing products and NH₃ conversion for the selective catalytic oxidation of NH₃ over $2\%Rh-Al_2O_3$ (1000 ppm NH₃, 18% O₂, balance He). Key: \Box , N₂; ∇ , N₂O; Δ , NO; \bigcirc , NH₃ conversion.

Fig. 2 Conversion profiles for the O₂ lean combustion of simulated biomass over 2%Rh–Al₂O₃ (1000 ppm NH₃, 0.275% O₂, 1.02% CO, 0.68% H₂, balance He). Key: \overline{O} , NH₃; \Box , CO; \overline{V} , H₂, \bullet , NH₃ as determined by external oxidation reactor/chemiluminescence.

Table 1 Lifetime performance of (1) 2% Rh–Al₂O₃ and (2) 2% Rh–10%CeO₂–Al₂O₃

Entry	% O_2 :CO/H ₂ :H ₂ O	% $N2$ at 1 h	%N ₂ at 2 h	% $N2$ at 3 h	%N ₂ at 4 h	% N_2 at 5 h
∸	0.275:1.7:0 0.275:8.9:2.5	98.3 100	97.5 100	96.7 100	96.6 99.9	96.6 99.8

by residual CO and/or $H₂$ occurs sequentially within the same bed of catalyst because the only nitrogen-containing product detected is N_2 . This methodology has also been examined for its efficacy under more severe conditions for extended periods with minimal loss of activity (Table 1) underlining its potential for commercial application. Moreover it should be stressed that in case of the $2\%Rh-10\%CeO₂-Al₂O₃$ catalyst, a significantly higher CO/H₂ concentration was employed, which in theory should mitigate *against* the activation of the NH₃ due to significantly enhanced competition for active sites, when in fact this sample exhibited almost no deactivation over the duration of the experiment.

In conclusion, we have developed a strategy for the complete removal of NH_3 from biomass-derived gases by coupling the total oxidation of NH_3 with the reduction of NO_x by CO and/or H2. Experiments have demonstrated that the concept is viable and provides a novel way to overcome the environmenal problems associated with the direct combustion of biomassderived gas. The strategy is equally applicable to any comparable gasification gas (from coal, or from other renewable sources). Future work will examine the potential poisoning effects of sulfur, alkali metals and chloride ions on activity, although given the net reducing conditions employed in this new process the impact of the former is expected to be limited given previous experience of the negligible effect of sulfur on way catalysts.⁹

We are pleased to acknowledge the financial support of ABB-Alstom power, the DTI and the EPSRC through the FORESIGHT Challenge initiative. Helpful discussions with colleagues at Lens (Dr Matthieu Amblard), Cranfield University (Mr J. J. Witton, Professor B. Moss, Mr J. M. Przybylski and Dr E. Noordally) and at ABB-Alstom Power (Mr M. Cannon, G. J. Kelsall) are gratefully acknowledged.

Notes and references

- 1 M. F. M. Zwinkels, G. M. Eloise Heginuz, B. H. Gregertsen, K. Sjöström and S. G. Järås, *Appl. Catal. A*, 1997, 148, 325.
- 2 L. Lietti, C. Groppi and C. Ramella, *Catal. Lett.*, 1998, **53**, 91.
- 3 *Development of Improved Stable Catalysts and Trace Element Capture for Hot Gas Cleaning*, DTI/ETSU/Clean Coal Power Generation Group, Project Profile 178, 1996.
- 4 W. C. Pfefferle, *Belg. Pat.*, 814572, 1974.
- 5 R. Burch and B. W. L. Southward, *Br. Pat. Appl.*, 98238879.3, 1998.
- 6 Y. Li and J. N. Armor, *Appl. Catal. B*, 1997, **13**, 131.
- 7 A. Fritz and V. Pitchon, *Appl. Catal. B*, 1997, **13**, 1.
- 8 D. Ferri, L. Forni, M. A. P. Dekkers and B. E. Nieuwenhuys, *Appl. Catal. B*, 1998, **16**, 339.
- 9 R. J. Farrauto and R. M. Heck, *Catal. Today*, 1999, **51**, 351.